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Abstract. E(2) is studied as the automorphism group of the Heisenberg algebraH . The basis in
the Hilbert spaceK of functions onH on which the unitary irreducible representations of the group
are realized is explicitly constructed. The addition theorem for the Kummer functions is derived.

1. Introduction

Investigating the properties of manifolds by means of the symmetries they admit has a long
history. Non-commutative geometries have become the subject of similar studies in recent
decades. For example, there exists an extensive literature on the q-deformed groups Eq(2)
and SUq(2), which are the automorphism groups of the quantum plane zz∗ = qz∗z and the
quantum sphere respectively [1]. Using group theoretical methods the invariant distance and
the Green functions have also been written in these deformed spaces [2].

The purpose of this work is to analyse yet another non-commutative space [z, z∗] = σ (i.e.
the space generated by the Heisenberg algebra) by means of its automorphism group E(2).

In section 2 we define E(2) in the Heisenberg algebra H and construct the unitary
representations of the group in the Hilbert space X where H is realized.

In section 3 we give the unitary irreducible representations of E(2) in the Hilbert space
K of the square integrable functions on H and construct the basis in K where the irreducible
representations of the group are realized. The basis is found to be written in terms of the
Kummer functions. The commutative limit as σ → 0 is also discussed.

Section 4 is devoted to the addition theorem for the Kummer functions. This theorem
provides a group theoretical interpretation for the already existing identities involving the
Kummer and Bessel functions. It may also lead to new identities.

2. E(2) as the automorphism group of the Heisenberg algebra

The one-dimensional Heisenberg algebra H is the three-dimensional vector space with the
basis elements {z, z∗, 1} and the bilinear antisymmetric product

[z, z∗] = 1. (1)
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The ∗-representation of H in the suitable dense subspace of the Hilbert space X with the
complete orthonormal basis {|n〉}, n = 0, 1, 2, . . . is given by

z|n〉 = √
n|n− 1〉 z∗|n〉 =

√
n + 1|n + 1〉. (2)

Let us represent the Euclidean group E(2) in the vector space H

g

(
z

z∗

1

)
=
( eiφ 0 reiψ

0 e−iφ re−iψ

0 0 1

)(
z

z∗

1

)
. (3)

Since these transformations preserve the commutation relation

[gz, gz∗] = [z, z∗] (4)

we conclude that

gz = U(g)zU−1(g) gz∗ = U(g)z∗U−1(g) (5)

where U(g) is the unitary representation of E(2) in X:

U(g1)U(g2) = U(g1g2) U ∗(g) = U−1(g) = U(g−1). (6)

Simple verification shows that the normalized state

|0〉′ = e− r2

2 e−rei(ψ−φ)z∗ |0〉 (7)

satisfies the condition

gz|0〉′ = 0. (8)

In the new orthonormal basis

|n〉′ = (gz∗)n√
n!

|0〉′ (9)

we have

gz|n〉′ = √
n|n− 1〉′ gz∗|n〉′ =

√
n + 1|n + 1〉′. (10)

The unitary operator U(g) defines the transition between two complete orthonormal bases
{|n〉} and {|n〉′}

|n〉′ = U(g)|n〉 |n〉 = U(g−1)|n〉′. (11)

Matrix elements of U(g) in the basis {|n〉} read

〈m|U(g)|n〉 = e− r2

2√
n!

〈m|(gz∗)ne−rei(ψ−φ)z∗ |0〉 (12)

which after some simple algebra can be expressed in terms of the degenerate hypergeometric
functions as

〈m|U(g)|n〉 = (−)mei(m−n)ψ−inφ r
n+me−r2/2

√
n!m!

2F0

(
−m,−n; − 1

r2

)
. (13)

Using the relations [5]

2F0

(
−m,−n; − 1

r2

)
= n!

(n−m)!

(
− 1

r2

)m
�(−m, 1 + n−m; r2) n � m (14)

2F0

(
−m,−n; − 1

r2

)
= m!

(m− n)!

(
− 1

r2

)n
�(−n, 1 +m− n; r2) m � n (15)

we can also express the matrix elements in terms of the Kummer function �.
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3. Unitary representations of E(2) in the space of functions on H

Let K0 be set of finite sums

F =
∑

(fn(ζ )z
n + z∗nf−n(ζ )). (16)

Here fn(ζ ) are functions of ζ = z∗z with finite support in Spect(ζ ) = {0, 1, 2, . . .}.
Completion of K0 in the norm

‖F‖ =
√

tr(F ∗F) (17)

forms the Hilbert space K of the square integrable functions in the linear space H with the
scalar product

(F,G) = tr(F ∗G). (18)

The formula

T (g)F (z) = F(gz) (19)

defines the representation of E(2) in K . Equations (2) and (10) and the independence of the
trace from the basis over which it is taken implies that the representation is unitary. Using (5)
we can rewrite (19) in the form

T (g)F (z) = U(g)F (z)U ∗(g). (20)

Now we consider the infinitesimal form of (19). Let g = g(reiψ, φ) in (3). With the one-
parameter subgroups g1 = g(ε, 0), g2 = g(iε, 0) and g3 = g(0, ε) of E(2) we associate the
linear operators K0 → K

pk(F ) = lim
ε→0

1

ε
(T (gk)F − F) (21)

with the limit taken in the strong operator topology. Inserting (20) into (21) we obtain

p(F) = 2[F, z∗] p(F) = 2[z, F ] h(F ) = [ζ, F ] (22)

where

p = p1 − ip2 p = p1 + ip2 h = ip3. (23)

For example

p(f (ζ )zn) = 2(nf (ζ ) + ζ(f (ζ + 1)− f (ζ )))zn−1. (24)

Equations (18) and (22) imply the commutation relations and real structure for the Lie algebra
of E(2):

[h, p] = p [h, p] = −p [p, p] = 0 (25)

p∗ = −p h∗ = h. (26)

The irreducible representations of E(2) defined by the weight λ ∈ R can be constructed in the
space of square integrable functions on the circle and the matrix elements are given in terms
of the Bessel functions [4]

tλkn(g) = in−ke−i(nφ+(k−n)ψ)Jn−k(λr). (27)

Coming to our case the basis Dλ
k in K where the unitary irreducible representations of the

group are realized will be the eigenfunctions of the complete set of commuting operators pp∗

and h:

pp∗Dλ
k = λ2Dλ

k (28)

hDλ
k = kDλ

k . (29)
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The solutions of the equation (29) are

Dλ
k (z) =

{
z∗kf λk (ζ ) if k � 0
f λ−k(ζ )z

−k if k � 0.
(30)

Inserting (29) into (28) we obtain

(k + 1 + ζ )f λk (ζ + 1) +

(
λ2

4
− 2ζ − k − 1

)
f λk (ζ ) + ζf λk (ζ − 1) = 0. (31)

By virtue of the recurrence relation [5]

a�(a + 1, b; c) + (a − b)�(a − 1, b; c) + (b − 2a − c)�(a, b; c) = 0 (32)

we observe that the solutions are given in terms of the Kummer functions as

f λk (ζ ) = (−λ2)k/2

2kk!
e−λ2/8�

(
−ζ, 1 + k; λ

2

4

)
. (33)

The formula

Lkn(x) = (k + n)!

k!n!
�(−n, 1 + k; x) (34)

allows us to express the basis elements in terms of the Laguerre polynomials too:

f λk (ζ ) = (−λ2)k/2ζ !

2k(k + ζ )!
e−λ2/8Lkζ

(
λ2

4

)
. (35)

The above formula is well defined since the spectrum of the operator ζ is the set of positive
integers with zero. It is well known that the Laguerre polynomials are related to the group of
complex third-order triangular matrices [4]. The group parameters appear in the argument of
the Laguerre polynomials. However, in our case the group parameters appear in the index of
this function.

To obtain the orthogonality relations we first take the z → 1− limit in the summation
formula [6]
∞∑
n=0

n!

(n + k)!
Lkn(x)L

k
n(y)z

n = (xyz)−k/2

1 − z
e−z(x+y)/(1−z)Ik

(
2
√
xyz

1 − z

)
|z| < 1 (36)

then use the asymptotic relation for the Bessel functions [3]

Iν(x) ∼ ex√
2πx

+
e−x+(ν+1/2)π

√
2πx

(37)

and employ the representation

δ(x) = lim
ε→0

1√
πε

e−x2/ε (38)

for the Dirac delta function. As the result we have

(Dλ
k ,D

λ′
n ) = δknδ(λ

2 − λ′2). (39)

Let us make the substitution z → 1√
σ
z in (1). In the σ → 0 limit the linear space H

reduces to the complex plane, and Dλ
k (z) reduces to tλk0(g), which are the restriction of the

matrix elements (27) on the complex plane E(2)/U(1):

lim
σ→0

D
√
σλ

k

(
1√
σ
reiψ

)
= tλk0(g). (40)

To prove the above limit we used the asymptotic relation [5]

lim
a→∞�

(
a, b; c

a

)
= 0(b)

√
c1−bIb−1(2

√
c). (41)
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4. The addition theorem

Let us consider the representations of E(2) in the basis Dλ
k :

T (g)Dλ
k (z) =

∞∑
n=−∞

tλkn(g)D
λ
n(z). (42)

By making use of (20) the above formula can be rewritten as

U(g)Dλ
k (z)U

∗(g) =
∞∑

n=−∞
tλkn(g)D

λ
n(z) (43)

which is an addition theorem useful in deriving many identities involving the Kummer and
Bessel functions. For example let g = g(r, o), k � 0 and x = λ/2. Then (43) reads

xk

k!
Uz∗k�(−ζ, 1 + k; x2)U ∗ =

∞∑
n=0

xn

n!
Jk−n(2rx)z∗n�(−ζ, 1 + n; x2)

+
∞∑
n=1

(−x)n
n!

Jk+n(2rx)�(−ζ, 1 + n; x2)zn (44)

where

U = e− r2

2

∞∑
n,m=0

(−)mrn+m

√
n!m!

2F0

(
−m,−n; − 1

r2

)
|m〉〈n|. (45)

Sandwiching (44) between the states 〈0| and |0〉 we obtain
∞∑
n=0

r2n

n!
�(−n, 1 + k; x2) = k!(xr)−ker

2
Jk(2xr). (46)

Multiplying (44) by U ∗ from the left and then sandwiching it between the states 〈m + k| and
|0〉 we obtain another formula

(m + k)!

m!k!

(x
r

)k
�(−m, 1 + k; x2) =

∞∑
n=0

(−xr)n
n!

2F0

(
−m− k,−n; − 1

r2

)
Jk−n(2xr). (47)

It is clear that (43) can lead to many more identities and that some of them may not exist in
the literature.
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